
R ? 95 COUNECTED CWMO EN LMELING IN IMAGE POCESSING HITN 1/1
MIND (ULTIPLE INST.. (U) NEW YORK UNIV NY COURANT INST
OF MATHEMATICAL SCIENCES R A HUMMEL ET AL. JUL 0

UNCLASSIFIED TR-t 73 M 014-S--0260 F/O 9/2 AL

IIIIIIIIIIII
I E/..hhh

IJ

1j.

1 .25 A

Connected Component Labeling in Image Processing with

MIMD Architectures

by

Robert Hummel

Alan Rojer

Technical Report #173
Robotics Report #49

Ultracomputer Note #87
July, 1985

S..

Connected Component Labeling in Image Processing with

MIMD Architectures

by

Robert Hummel
Alan Rojer

Technical Report #173
Robotics Report #49

Ultracomputer Note #87
July, 1985

New York University
Dept. of Computer Science 0 tw.

Courant Institute of Mathematical Sciences k"- '
251 Mercer Street

New York, New York 10012

Work on this paper was supported by Naval Research Laboratory Grant N00014-85-M-0260,
and National Science Foundation Grant DCR-84003300. We wish to thank Professor Uzi S,

Vishkin for helpful comments, and Michael Passaro for document preparation.

'hmpu,%, qb gOW of IdLaft"; Q

Man hghe-lvelimgeABSTRACT . .t.

Man hiherlevl iageprocessing algorithms suggest dynamic
allocation of multiple processors to image processing subtasks.
However, most parallel algorithms in image processing assume an
SIMD1f architecture with processors statically assigned to one or a
group of image pixels. For many vision tasks, fixed assignments of
processors will inevitably lead to low parallelism. Instead, it seems
natural to have an intermediate number of more powerful
independent processors, each with access to the shared data, to
perform tasks that tend to be more global in hature. In converting
SIMI) algorithms into efficient code for MIMD,.viachines with
relatively fewer processors, it can frequently be determined when
processors are active and when they are dormant. By analyzing the
dynamic flow of subtasks, we can attempt to assign processors to the
portions of the image where non-null tasks would be accomplished in
a more processor-rich environment.

-We study, as an example, the Shiloach/Vishkin connected component
algorithm, which is an O(logN) SIMI) algorithm which requires
roughly 4N processors, where N is the number of pixels,.,Each pixel
points to another pixel in its connected component, forming a
pointer graph which is always organized as a forest. Pointers are
updated by a "leapfrogging" step and by a step which "hooks" trees
together. We show how the algorithm may be converted to an
MIMD algorithm, and consider issues of task flow and
synchronization. We present code for an implementation of the
MIMD version of the algorithm, and consider operating times on
typical images. We show that similar performance can be using the
MIMD approach as with the more standard mesh connected local
iterative connected component method.

1. Introduction

Many low-level vision task are ideally suited for parallel computers configured
as a large grid of locally connected simple processors executing a single instruction
stream. Such SIMI) (Single Instruction, Multiple Data) image processing computers
now exist (1,2,3]. Common tasks such as point operations, thresholding,
convolution, texture analysis, and median filtering are easily transferred to such an
architecture. A range of other tasks, such as morphological operations (shrinking,
expanding, smoothing), region growing, and relaxation operations for segmentation
are also frequently well-suited to mesh arrays. However, many of these operations
are really ways of identifying structure within the image, and to make
measurements in particular locations within the image, by treating each pixel in a
uniform way. That is, on a mesh connected architecture, these algorithms in fact
perform useful work on only a fraction of the image pixels. Finally, for many
higher-level vision tasks, such as boundary parameterization, feature extraction,

object matching and symbolic constraint propagation, mesh connected architecturesZ.I

can at best clumsily provide the necessary data 'rommunication paths.

Some of the mesh connected machines are enhanced with global operations,
such as a "sum-OR" or even a global sum of bits, in order to give the machine the
ability to perform fast image maximums or histograms. This increases the ability to
extract Hough transforms and other image-wide features. The difficulty here is that
region-based features and local Hough transforms can only be accomplished by
masking out the relevant regions, and operating serially on the individual regions.

Certain algorithms are necessarily non-local. For example, connected
component extraction and convex hull operations on binary images require long
range communication, as pointed out in [4]. Although these can be implemented on
mesh connected machines, typically a large number of processing steps are
required. For example, for connected component labeling, the standard algorithm is
equivalent to a breadth-first-search, and works by having pixels within each region
iteratively replace a current identifier with the maximum of identifiers within its
local region. If each pixel begins with a unique identifier, then eventually each
component will be labeled with the number representing the maximum identifier in%
that component at the start of the process. An asymptotically faster approach is
available, and works by a divide-and-conquer approach [5]. Connected component
analysis is done within each of four quadrants of the image, by a recursive
procedure, and then the components are combined by an equivalence table analysis,
done within the mesh, along the interface borders of the quadrants. This latter
algorithm can work in time 0(n) on an ns by ns grid. On a pyramid machine, the
worst case complexity can be further reduced to O(Vi-) [6].

Once components are extracted, it is usual in image processing to analyze those%
components, and form complex representations, in order to perform recognition and
scene analysis. Features like moments, Fourier descriptors of the boundary, other
curvature measurements, three dimensional shape analysis, and graph structure of
regions generally argue for a standard, powerful processor capable of accessing all
the image data. Parallel architecture design would then suggest that if one
processor with global access is useful for higher level vision analysis, then two
processors will be more advantageous. In fact, if the standard image has a few
dozen or a few hundred regions whose shapes, descriptions and local context
require analysis in relative isolation from the remaining portions of the image, we
would like to have available several dozen or hundreds of processors, each capable
of running an independent instruction stream, and each reconfigurable in the sense
that it can be assigned to a variable portion of the image. We are thus led to
consider MIMD (Multiple Instruction, Multiple Data) shared memory architectures
for image processing.

Parallelism on the order of a few hundred or thousand processors in MIMD
shared memory mode offers a number of attractive features for image processing.
Since the architecture can be considered "medium -grained" (granularity is relative;
here we are comparing to the number of pixels in a typical image), each processor
can be a quite capable multi-MIPS (Million -Instructions per Second) microprocessor,
with a rathz-r complete instruction set. In particular, we see each processor as
having registers, a local cache memory, as well as complete access to globalU
memory. This compares with fine grain, typical SIMI) architectures, where the
processors have access exclusively to a few hundred bytes of local memory, and are

Pose 2

4

typically bit serial or 8-bit processors with an extremely limited instruction set. The A

use of powerful processors eases algorithm development and enhances flexibility in
design and coding. We should expect that nearly all standard image processing
algorithms can be handled with relatively good efficiency and programming ease on
a multiprocessor shared memory design.

Further, reconfigurability of the assignment of processors to image regions
coincides with notions of "focus of attention" and foveal resolution versus periphery
processing. Each processor can work on a specific component, communicating with
neighboring components through the relevant processors by means of an "edge
adjacency list" data structure for the dynamic graph of image regions.

Finally, since processor power can be targeted to relevant portions of the
image, we expect to increase the degree of parallelization. In grid arrays, with
fixed assignment of processors to pixels, many of the processors perform no useful ,
work during execution of a cycle, simply because they are statically assigned to
locations where work is not needed. Thus many algorithms yield degrees of 'V
parallelization in the range of a fraction of a percent. With the reconfigurability of
a medium grain architecture, we expect to increase the usage figure, at least for
higher level image processing tasks, to the tens of percent.

There are now a number of proposed and prototype MIMD shared memory
computers [7, 8]. The use of these machines for image processing has received some
attention [9,10]. However, the conversion of standard algorithms to MIMD parallel
code offers some subtleties. Very high level vision tasks presumably offer few Z
obstacles, because little coordination between processors is necessary. Sharing of
data is usually minimal. However, for lower level vision tasks, there are difficulties
related to synchronization and assignment of processors. In this paper, we study as
an example case the graph theory algorithm of Shiloach and Vishkin for connected
component labeling [11]. This algorithm, like most intermediate level vision tasks,
is presented as an SIMD parallel algorithm. We study how such an algorithm can
be mapped to a realistic MIMD machine. Our model for the MIMD machine is the
NYU Ultracomputer [8]. Our choice of the connected component algorithm is
based on the observations that component labeling is necessarily a non-local
operation and that the O(logN) algorithm is non-obvious but easily described and
coded.

There are two main concerns that arise in converting SIMD parallel algorithms
to MIMD medium grain architectures. First, it is usually possible to concentrate
processors at locations where useful work will be accomplished. We allow available
processors to perform a step in the algorithm, and simultaneously create a list of
locations to be considered in subsequent steps. In much the same way that data
flow techniques analyze the flow of data through processing steps in an algorithm,
MIMD architectures in image processing demand a "task flow" analysis. The data
can be regarded as fixed, like a blackboard, but the tasks that must be assigned flow
in a way that depends upon the initial data. Consider, as a trivial example, an
erosion operation on a binary image. Erosion, for our purposes, can be defined as
setting all boundary pixels with value "I" to "0", thereby eroding the border of
regions. The SIMD approach to this operation is to replace each pixel's value with
the minimum in the local neighborhood. However, in the SIMD approach, we note
that "useful" work is accomplished only on the border of regions. The MIMD *' . .1

Page 3

tkl% oZ14k,_

approach would therefore be to create a list of points on the borders of regions, and
to assign processors to the tasks of reseting those pixels to the value "0". At the
same time, processors can determine a new list of boundary points, where the next
iteration of an erosion operation will create new pixel values. The new list might
contain redundancies, but it is nonetheless a considerably smaller list than the set of
all pixels. In this algorithm, we see that the tasks are assigned to border pixels, and
that the border flows in a predictable way, such that a new list of border points can
be constructed from an iteration applied to previous border pixels.

A second concern is one of synchronization. The SIhfD algorithms assume that
many tasks are accomplished concurrently, and normally,-assume that concurrent
reads are allowed and yield identical information. Frequently, concurrent writes are
also permitted, and it is generally assumed that exactly one write to a specific
location at a given time is successful. When we convert to an MIMD environment,
in image processing applications we are normally in a processor poor situation.
Thus tasks that were meant to be done concurrently will be at least partly serialized.
Standard issues of data concurrency arise: if early serialized subtasks change the
values of data, then later tasks may access data that is different than what would be
expected in a synchronous application of all tasks. These problems can be handled
by one of three methods: (1) Read from a fixed copy of the data, and write a new
copy with appropriate changes; (2) Read from the data, writing changes as a list of
tasks to be performed later, after all of the serialized analysis tasks are finished; or
(3) Show that asynchronous operation of the steps, which is what partial
serialization with early writes to the data constitutes, is a satisfactory approach for
the algorithm in question. For the erosion example, the third alternative is probably
not appropriate, since changing a border pixel from a "1'" to a "0" changes what
might be considered a border pixel, so that if the list of tasks contain border
candidates that are not border points, a subsequent task might change a pixel that
otherwise would be considered an interior point, Of course, if the list of points is
always known to be a (possibly redundant) list of border points, then the tasks
amount simply setting values to zero, and determining new border points, and
asynchronous operation will work. Otherwise, the second approach, of creating a
list of border points to be converted to "0O...s and to enqueue new candidate
boundary points on a new list, will be necessary.

2. A Parallel Algorithm for Connected Components of a
Graph

Shiloach and Vishkin [11] give an algorithm to find connected components of an
undirected graph using a computational model that allows simultaneous reads and
writes by multiple processors to a common memory. In the case of simultaneous
writes, the model specifies that one of the writes succeeds, but does not specify in
advance which processor will be successful.

Each vertex in the graph is assigned a parent pointer. The algorithm uses these
pointers to construct a forest of root-directed trees, also called a pointer graph; each
tree is compose of vertices known to reside in the same connected component.
Initially each vertex is its own parent, i.e., each vertex comprises a rooted tree with
only one node. At termination, the parent pointers of all vertices in the same
connected component point to the same root vertex.

Palo 4

In the Shioach/Vishkin parallel algorithm, each vertex is assigned a processor.
Each edge is assigned two processors; in effect, a processor in each direction of
edge traversal. Two operations are performed in the algorithm. The shortcut
operation redirects a vertices' pointer to the parent of its parent, reducing the height
of the trees. Shortcutting is mediated by the vertex processors. The hook operation
directs the pointer of the root of a tree (self-directed before the operation) to point
to some node in another tree. Hooking is mediated by the edge processors. We let
V be the set of vertices, and E is the set of directed edges, one for each edge
processor.

At intermediate stages of the algorithm, the trees in the pointer graph can be
classified as live, stagnant, and dead. A live tree has been shortcut or hooked in the
current iteration. A stagnant tree has not been shortcut or hooked in the current
iteration. A dead tree has not been shortcut or hooked in the previous iteration.

In the following algorithm, each vertex is assigned an age value, which is used
to determine when trees are stagnant or dead. Further, we assume that each vertex
v is denoted by a distinct integer. Thus if v is the integer value for a vertex,
parent~v] is the integer value of v's parent vertex, and age[v] is the integer value of
the last iteration in which v was shortcut or hooked.

PESO 3

/* initialize */
0) (Vv)[v E V] cobegin

parent[v] -v;
age[v] -0;

coend
I -0;
While (3v)[age[v] - I] begin

I++;
7* Shortcutting *

1) (Vv)[v (V] cobegin
old-parent -parent[v];
parent[v] - parent[parent[V]];
if (old-parent # parent[v]) age[parent[v]] I;

coend
/* Ordered Hooking */

2) (V(xy))((xy) (El cobegin
If parent[x] - parent[parent[x]] /* x points to a root */
and parent[x] < parently] then begin

parent(parent[x]] - parent[y];
age(parent(y]] -- I;

end
coend
/* Stagnant Hooking /

3) (V(xy))[(xy) (El cobegin
if parent[x] - parent[parent[x]] /* x points to a root */
and age[parent[x]]<I /* root is stagnant */
and parent[x] # parently] then begin

parent(parent[x]] -parent[y];
age[parent(y]] -- I;

end
coend
/* Shortcutting *

4) (Vv)[v E V] cobegin
old-parent -parent[v];
parent[v] -parent(parent[v]];
if (old-parent # parent[v]) age(parent[v]] I;

coend
end

3. Time Complexity of the Algorithm
The correctness of the algorithm is easily established. We will concentrate on

the time bound. The proof sketched below differs only slightly from that of [11].
In [11], a bound on the cardinality of the trees is related to the iteration counter I.
Here, we show instead a bound on the height of the live trees in the forest formed
by the parent pointers. We define height as the maximum number of pointers
which must be traversed in a simple path from any vertex in the tree to the root,
with the additional proviso that tree height is always at least one. In particular, a
tree consisting of only a single node (the root node with a self loop) is considered to

Page 6

4.74

have height one, as is a tree where all vertices point to the root.

We first quantify the effect of shortcutting with

Lemma 1: Shortcutting a tree of height h > I reduces its height by at least a factor of
312.

Proof. For any tree of height h> 1, shortcutting yields a height of rh/21. But for
any h22, we have

h %
h2 3/2. 0

[h/21

We will need a rather technical lemma:

Lemma 2: If u > parent[u] after any step in the algorithm, then either u is a leaf node
or all of u's predecessors in the pointer graph are leaf nodes.

Proof: The proof is by induction on the steps in the algorithm. Initially, since
parent(u] = u for all vertices, the lemma holds true vacuously. If the lemma holds
true at the start of a shortcutting step (Steps 1 or 4), then the shortcutting operation
of pointing u to w where there were links from u to v and v to w can create a new
link with u>w. However, in this case, either u > v or v > w before the
shortcutting. In the former case, either u is a leaf or all its predecessors are leaves.
In the later case, v's predecessors, including u, must be leaves. In either case, after
the shortcutting, u must be a leaf.

Ordered hooking (Step 2) can never create a link from a larger to smaller
vertex.

Stagnant node hooking (Step 3) can link a node u to a node v with u>v.
However, in this case, u must be a root of a stagnant tree. A stagnant tree cannot
have a height greater than 1, or else it would have been shortcut in Step 1. Thus at
the start of Step 3, u is either a leaf, or all of its predecessors are leaves. During
Step 3, no other stagnant root can hook onto u, since otherwise in Step 2 one of the
two roots would have been eligible to hook onto the other. Thus in Step 2, either u
would have succeeded in hooking onto something, in which case it is not a root, or
something succeeds in hooking onto u, in which case it is not stagnant. Further,
during Step 3, any of u's predecessors will remain leaves, since nothing can hook
onto a leaf. Thus at the end of Step 3, the lemma holds for node u. This
establishes the induction for steps 1,2,3, and 4. 3

Lemma 3: If n trees of heights hi, i- 1,...,n, are hooked together, the result is a tree is

of height no more than hi.
L.-1

Proof: The first part of this lemma is to show that the result is a tree; that is, we
must show that no cycles are created. Suppose that a cycle is created after some
step. Then somewhere along the cycle, there must be a pair of consecutive nodes u
and v such that u>v and u points to v. According to the previous lemma, either u is
a leaf, or all of u's predecessors are leaves. Either way, u can't be part of a cycle.

Page 7

Consider hooking T1 into T2 , assumiig both trees have more than one node.
Let their heights be h, and h 2 respectively. After hooking, the maximum height h
of the new tree is no more than the sum of the heights of the old trees, plus one for
the new link, less one since we couldn't hook to a leaf in T2; thus,

h5h1 + I+h 2- l=hl +h 2.

If either or both trees has one node, that node can contribute at most 1 to the height
of the resulting tree, so the result follows. The result easily generalizes when n trees
are hooked together. 3

Definition: A root u is eligible if there exists an edge (x,y) E E and a node v u
with parent[x] - u and parenty] = v, such that either v>u or age[u] < I. 0

Then we have

Lemma 4: Eligible roots are always hooked.
Proof: Suppose u is an eligible root, and (x,y) is the edge with parent[x] - u and
parent(y] = v. If v>u, then in Step 2, the edge processor (x,y) will attempt to hook
u onto v. Either (x,y) succeeds, or some other processor succeeds; in either case, u
will hook onto some node. If age[u] < I and u doesn't hook in Step 2, then u is a
stagnant root by step 3, so the processor (x,y) will attempt to hook u to v. Once
again, some such processor succeeds, and so u hooks. E3

Lemma 5: Dead trees stay dead.
Proof: Recall that a dead tree is one which has not been shortcut or hooked in the
previous iteration. Clearly the height of a dead tree must be 1, or it would have
been shortcut. Also, its root must not be eligible, or it would have been hooked
(Lemma 3). Thus, it can only be brought back to life if another tree is hooked into
it, which implies the existence of some edge (x,y), where x is in the dead tree and y
is not. But then the root would be eligible, since u must point the root, which is
stagnant by Step 3 of the iteration in which the tree dies, and we have a
contradiction. Thus if a tree is dead, it cannot be hooked into or shortcut, so it
stays dead. 0

We can now present the key
Time Bound: The sum of the heights Hi of all live trees at the end of iteration i is
bounded by

iHj: (. N, ;

where N is the number of vertices in the graph.
Proof. By induction on i. Initially (i=O), each vertex forms its own tree, of height
1, so Ho= N. The induction hypothesis states that after i- 1 iterations, the sum of
the he' hts Hi_. of the live trees is bounded by

Page I

H- 15-, N

We show that a tree in the forest of height h at the end of iteration i- 1 contributes
no more than (2/3)h to H,. If h=I and the root is not eligible, the tree dies, and it
contributes nothing to Hi. If h>1 and the tree is neither eligible nor hooked into by
some other tree, it is shortcut in Step 4, and its contribution to Hi is at most (2/3)h.
If the root hooks or is hooked, then the height of the new tree to which it belongs is
no more than the sum of the old heights of the individual trees that have hooked
together. However, since the new tree has height .greater than 1, and Step 4 will
shortcut the tree, its height will be at most 2/3 the height of the sum at the end of
the iteration. Thus each participating tree contributes no more than 2/3 its height in
the previous iteration to H,. E

As a direct consequence of the bound above, we see that after more than
log(3fl)(N) iterations, we must have Hi=O, which is to say that all trees are dead,
and the algorithm terminates.

Note that the Step 1 shortcutting is necessary to define eligibility of a node (a
stagnant node). Since Step 1 may be applied to trees of height 1 which do not
reduce in height and yet do not die because they can hook, we cannot claim a 3/2
factor total height reduction on account of Step 1.

4. Necessity of the Steps
As noted in [11], Step 4 is unnecessary, and omitting it will at worst double the

number of iterations required for termination. Its inclusion simplifies the proof,
and less than doubles the amount of work required per iteration while halving the
number of iterations that will be needed in the worst case. Whether the trade-off is
reasonable in the average case is best judged by empirical studies.

Step 2 is needed to prevent cycles from forming. If Step 3 is omitted, then the
algorithm will still work fine - however the O(logN) time bound is no longer valid.
Dropping Step 3 is appealing, however, since it is the only step that introduces
pointers to smaller vertices. Without Step 3, the final labeling will be components
with vertices pointing to the maximum vertex within each component. If the
vertices are numbered according to some labeled value, this provides an algorithm
for simultaneously labeling connected components and finding maximum values
within components. If the 0(logN) connected components algorithm is performed
first, and then maxima found within each component, the result for an
Ultracomputer is an O(ClogN) method, where there are C components. If the
Ultracomputer permits parallel maximums, in the same way that it permits paralleladds, then the method is O(C+logN). Thus if omitting Step 3 retains the O(logN)
performance of the algorithm, we have a better component maximum method;
although the advantage to the case where parallel maximums are allowed is very
slight.

Unfortunately, as is shown in (11], the algorithm without Step 3 can result in
O(N) time performance. The situation arises with a star graph. We might
conjecture that for subgraphs of images, which are planar graphs with bounded in-
degree, such examples won't arise. However, Figure la shows a comb graph, which

Pap 9

when numbered as shown, and under somewhat perverse conditions, will reouire
O(N) iterations. The first hook operation yields the pointer graph shown in eiguia
2. The only eligible root is n+1, which in the next iteration might hook to n+2.
Continuing in this way, a possible sequence of n/2 node hooks will be needed.

1234 n

............. n+ 2 n+ I

Figure 1. A comb graph

n+2 n+

Figure 2. The pointer graph after the first min-neighbor hook operation. If
stagnant node hooking is omitted, then after a couple of short-cut
operations, the only eligible root is "n+ 1, which might then hook to
"n+ 2". This process can continue, yielding n/2 iterations before
termination.

If the graph is ordered in raster scan fashion, instead of with malicious intent
as was done in the example above, it is still possible to construct an example which
needs linear time. In this case, however, the comb has to be laid out in one
dimension across the image, and so on an n by n image is limited to 0(n)
complexity.

The perverse nature of these counterexamples leads us to conjecture that an
expected time of 0(logN) would be obtained by the simplified algorithm omitting
Step 3 if all hooks are equally likely.

5. Task Flow of the Algorithm
The proof of the algorithm allow, us to make some immediate observations

about when processors will be needed for useful work.

Observation 1: All vertices in a dead tree and all edges adjoining vertices in a dead
tree will be inactive for the remainder of the procedure.

This follows immediately from Lemma 5. r3

Page 10

....., ,. ,. -., -.,.

Observation 2: Once it is known that two neighboring vertices x and y point to nodes
in the same tree, then the edge processor (x,y) will no longer be needed. 0

This follows because edge processors are only used for hooking roots to other
nodes, and since cycles are never created (Lemma 3), roots never hook to nodes
within the same tree. r3

As a corollary to Observation 2, we have

Observation 3: If parent[xJ - parent[y], then (x,y) will thereafter be inactive;

and

Observation 4: If (x,y) succeeds in hooking the root parent[x) onto the vertex
parent[y] in either step 2 or 3, then the processor (x,y) will be inactive thereafter.

Given the inclusion of Step 4, we can identify yet another situation when
processors will be inactive:

Observation 5: If during Step 4, parent[u] is set to point to a root, then the vertex u
need not be considered in the subsequent Step 1.

Of course, shortcutting is unnecessary if u points to a root. However, it takes as
much time to check whether u points to a root as it does to execute the shortcutting
step for u. Thus this observation would not seem to help much. But if a vertex
points to a root at the start of Step 4, then it will be among those vertices that point
to roots after Step 4, and this information can be obtained essentially for free (i.e,
parent(u] does not change in Step 4)). These nodes need not be considered in the
following Step 1.

Note that due to the possibility of hooking in Steps 2 and 3, all vertices except
those in dead trees must be subjected to shortcutting in Step 4.

We see that for the most part, tasks to be performed by steps in the algorithm
are pruned as processors become inactive. The only exception is that shortcutting a
node in Step I can be omitted if the node is known to point to a root on that
iteration; it may happen that the root will subsequently be hooked and so the
processor will be reactivated. Nonetheless, we might be tempted to maintain a list
of active processors, and remove items from the list as processors die according to
the observations above. However, for purposes of synchronization, we need to
form a new list for each step, and to read from the current list when assigning tasks
in the current step. Thus it is easier to enqueue tasks that will be necessary in
subsequent steps as they are discovered in the current step. We discuss the
enqueuing and processor assignment methods in the implementation section.

How should task requests be represented when enqueued on a list? For Steps 1
and 4, tasks will be represented as a list of vertices to be subjected to a shortcutting
step. For Steps 2 and 3, tasks are given as a list of edges between vertices. Strictly
speaking, the edges are directed. However, if (x,y) is inactive, then (y,x) is also
inactive, since our only criterion for inactivating edge processors is Observation 2,

Page 11

[- .* ~ *~ * ~ *~%~~~** ?~

which is symmetric in x and y. So the entry (xy) can stand for two edge tasks:
namely (x,y) and (yx). Further, Steps 2 and 3 can be recoded to perform both of
the directed tasks at once as a single task. Initially, all vertices in all components
are on the vertex list, and the edge list consists of all edges (xy) with y as a south
or east neighbor of x, and x and y both are vertices in the vertex list. The initial
lists can be formed by a raster scan of the image, which can be done in parallel.
(See the pseudocode for Step 0 in the Appendix). Processors are assigned to
successive pixels in raster-scan order. A processor assigned to pixel x enqueues the
south and/or east edges (x,y) if the edge connects vertices in regions.

Step I is performed for all vertices on the vertex list. .No new lists are formed
during Step 1.

For Step 2, we examine all edges on the edge list. During Step 2, (x,y)
attempts to hook parent[x] onto parent[y] or vice-versa, under the conditions that
one node is a root and the other has a larger numerical value. A new edge list is
formed, and (x,y) is enqueued on that list unless (1) it is observed that parent[x] -
parent[y] when checking the order relationship on the parents, or (2) the task (x,y)
is successful in hooking parent(x] onto parenty], or (3) the task (yx), which is
performed as part of the (xy) request, is successful in hooking parenty] onto
parent(x]. It appears as though a slight bit of additional work is needed to perform
these checks: ordinarily, parent(y] does not have to be accessed by (x,y) if parent(x]
is not a root. The objection is moot, however, since the symmetric (y,x) operation
must check parenty] to see if it is a root, so that both parents will be accessed
anyway. There is, nonetheless, a slight time penalty to determine whether a request
to hook is successful, and also to perform the enqueue step, as we will discuss in the
implementation section.

Step 3 then uses the new edge list, and can form yet another edge list. If a new
list is formed, the process is identical to the edge list formation in Step 2: for each
edge (x,y), parent(x] and parent(y] will both be accessed (to see if either is a
stagnant root). The edge (x,y) is not enqueued if parent(x] - parent(y], or if
parent[x] succeeds in hooking onto parent(y], or vice-versa.

It is not clear that forming a new list (which will be used for Step 2 in the next
iteration) is worth the extra expense during Step 3. Instead, one can simply retain
the edge list formed during Step 2, and use it for the next iteration's Step 2. Some
edges will not be pruned that are otherwise unnecessary, but they are likely to be
rare, and will be pruned during the list formation in the subsequent Step 2.
Empirical studies are needed to judge whether creating a new list in Step 3 is
justified.

Finally, Step 4 uses the vertex list, and creates two new vertex lists. One
vertex list will be used for the subsequent Step I, and the other vertex list will beheld for Step 4 of the next iteration. The Step I list is formed of all vertices ths-
change parents during the Step 4 shortcutting. The remaining vertices are known to
point to roots, and so needn't be considered in the subsequent Step I. The Step 4
list is formed of all vertices except those in dead trees. A member of a dead tree
can be recognized in Step 4 by noting whether the vertex points to a root that has
not been shortcut or hooked in Steps 1,2. or 3. That is, the vertex v is enqueued on

the next Step 4 list unless parent(v] does not change and age(parent(v]] < I in Step
4.

Page 12

%~* % t ~ .0*...... P '--._-

-- -. n-a. .a FWTr r wj -cvn .. r-y-i-r r-,"~ n-

Pseudo-code for the modified steps is presented in the Appendix.

6. Synchronization
In a processor poor environment, we cannot execute all of the necessary tasks

within a step at once. Since we wish to avoid copying the entire pointer graph and
age labels to a separate output graph in each step, we must either queue the
requests for changes to the pointer graph, and execute the changes after completing
the analysis for the step, or suffer the consequences of asynchronous operation of
each step. Since we have a list of tasks to be performed, we could enqueue the
results of those tasks to a separate list, being sure to request a hook on a root no
more than once (the first request to a node should block all further requests), and
storing with all shortcut requests the node to which the new parent should point.
The request list could be performed after the task list is exhausted (synchronizing
between scans on the lists). It turns out, however, that in the case of the
ShiloachNishkin connected components algorithm, it is sufficient to operate each

stpasynchronously.
Within Steps 1 and 4. if shortcut requests operate asynchronously, trees will

still reduce in height. The final tree may be different than the tree resulting from a
synchronous shortcut step. For example, a four-node linear tree of height 3, if
shortcut by 4 separate (sequential) tasks, starting from the root and propagating to
the leaf, will result in a rooted star. The same tree, when shortcut by a parallel
operation, results in a tree of height 2. However, in this example and all other
examples, asynchronous shortcutting can only lead to more height reduction as
compared to synchronous shortcutting. This is because a node's parent's pointer
may have already been shortcut, in which case it can only point closer to the root.
Thus the shortcut on the current node will yield a parent pointer that goes closer to
the root. Unfortunately, an improvement can not be guaranteed, since it may
'%appen shortcut tasks occur from the leaf nodes toward the roots, rather than the
other way around.

If hooking operates asynchronously, the first time a root u is hooked to a node
v, it ceases to be a root, and so will receive no more hook requests during that step
(or, for that matter, in subsequent steps). However, the new edge from u to v
might be responsible for causing another node u' to attempt to hook to v during the
same step. Alternatively, if the node v happens to be a root, it might happen that it
will attempt to hook onto a node u' on account of the new edge from u to v during
that step. In either case, the situation arises if u has some neighbor x such that x
points to u'. However, an analysis of the proof of the time bound shows that the
only requirement of Steps 2 and 3 is that all eligible roots going in to a hooking step
are in fact hooked. Asynchronous operation does not defeat this property, since
asynchronous hooks only add possibilities for new hooks. None of the new hooks
are harmful, since they only connect trees that comprise nodes in the same
connected component. Some of the hooks may speed up the algorithm, by
combining trees that otherwise would not be combined until later iterations.

We conclude that asynchronous parallel processing of the steps will at worst
speed up the algorithm in terms of numbers of iterations.

The algorithm as given requires synchronization between the steps.

Page 13.

and to prevent cycles. Synchtcz ..ation between Steps 3 and 4 is needed to define
dead trees, and to ensure that Stepi 4 does the useful work of reducing the height of
combined trees. That is, if some shortcutting steps of Step 4 were to precede
stagnant node hooking in Step 3, shortcutting might be attempted on a stagnant tree
that is later hooked, and thus the combined tree height is not reduced by the
requisite factor of (3/2). Of course, the tree height would be reduced in the next
Step 1, and so eliminating synchronization between these two steps is at worst
equivalent to eliminating Step 4 entirely, which simply slows the algorithm by a
multiplicative factor. Between Steps 4 and 1, synchronization is needed to properly
test for termination, and again to ensure that Step 4 accomplishes all the work
credited to it. The iteration counter is increased in a serial section between these
two steps, and the test for termination is also done by a single serial processor.
However, we could make the iteration counter a local variable, updated by each
processor, and observe vertices not pointing to roots in Step 4, feeding them into
processors which then execute the Step I shortcutting. This of course assumes a
partly asynchronous operation of the steps, and means that a Step 1 shortcut on a
node v will access v's parent, who may not yet have been shortcut by its Step 4
operation. The result is that Step 4 may be partly ineffectual, which as noted before
at worst slows down the algorithm by a constant factor.

There is a minor penalty involved in requiring synchronization. Especially if
the number of processors P is a large fraction of the number of vertices N, there
will be a point at which ail tasks for a step have been assigned and many completed,
and available processors have nothing better to do than wait for completion of the
remaining uncompleted tasks. Thus the degree of parallelism is hurt by the need to
keep some processors idle.

7. Implementation
The Appendix contains pseudo-code for performing the ShiloachNishkin

algorithm on an MIMD machine. We have written the program assuming
synchronization between all steps, although as noted in the previous section,
synchronization is necessary only between Steps 2 and 3. We also assume
asynchronous operation within each step. -

In our C-like language, variables declared as "shared" are stored in the
common memory, and so are accessible to all processors. The address of a shared
variable (denoted by &v for the variable v) is also available to all processors.
We've avoided declaring automatic or static shared pointers for clarity's sake; we
could otherwise declare shared pointers (or variables in common memory
containing addresses) pointing to shared variables, or local copies of addresses
pointing to shared variables, or even perhaps pointers in common memory pointing
to local variables, and it is not so obvious how the syntax should differentiate
between theses cases. In our algorithm, some of the procedure parameters are
pointers to shared integers, and it is understood that the addresses of those shared
integers are available to all processors within that procedure. That is, in

sub(pN)
sharedimt *pN;

Page 14

all processors operating during (..} have access to the integer *pN, and a copy of the
address pN will also be located in common memory, but may well be cached by
individual processors in their local memory if the processors handle the pointer as a
read-only variable.

A block structure language such as ADA or PASCAL might be more
appropriate for coding these kinds of parallel algorithms, since the scoping rules for
nested blocks would make the visibility of variables explicit.

We have used the "fetch-and-add" instruction as our principle coordination
primitive. This instruction accesses a shared variable, returns the value, and
increments the stored amount by a specified increment. That is, the instruction is
equivalent to:

fetch&add(pV, inc)
int *pV;
int inc;
{

int val
val - *pV
*pV - val + inc
return(val)

The important point is that concurrent fetch-and-add's to the same shared variable
behave as though they had been requested serially, in some arbitrary order. Thus
ten simultaneous "fetch&add(&v,1)" requests will increment v by 10, and return
ten distinct consecutive integers, one to each calling processor. An important
property of the Ultracomputer is that simultaneous fetch&add's to a single variable
incur no time penalty. That is, all processors can issue a fetch-and-add to the same
variable in the same amount of time as it would take for one processor to execute a
fetch-and-add.

We use the construct "cobegin ... coend" to allocate processors. The
"cobegin nomorethan N"

line denotes a request to the operating system to assign as many processors as are
available, but no more than the integer value in the variable N, and put those
processors to work executing the following code. The processors use the "fetch-
and-add" primitive to dynamically allocate unique identifiers, which leads to data
variability and hence execution variability amongst the processors. The multiple
processors thus execute the intervening code in an asynchronous fashion. The
"coend" line is interpreted as requesting that all but the last assigned processor
reaching the "coend"statement put into an idle loop. The last processor to reach the
"coend" statement proceeds to execute the code following the "coend".

The operating system might implement the "cobegin ... coend" construct by
spawning exactly the requested number of processes upon reaching the cobegin,
leaving it to the scheduler to divy up processors among requested processes. A
shared variable is loaded with the number of active processes. As a process
completes, by reaching the "coend" statement, a "fetch and add" instruction with an
increment of -1 is issued to the shared variable representing the number of active
processes. The last process will receive the value 1 from the fetch-and-add

Page 1s

~I

instruction, and thus will know not to die, but to instead continue by reading
instructions following the "coend".

An alternative approach allows the "cobegin" to instantiate available
processors to the intervening code, along with a shared variable which counts the
number of assigned processors. As processors reach the "coend", they issue fetch-
and-add's with an increment of -1. Once again, the last processor will receive a
value of 1, and thus know to continue with the remaining code.

Within each "cobegin ... coend" block, we consider each step as a set of
independent and potentially parallel subtasks. The subtasks are given by the
processing of each vertex or edge. We organize the vertices and edges into lists
which are represented by arrays indexed by a shared variable. In the fully parallel
case, if a sufficient number of processors are available, we use a processor for each
vertex or edge element on the list. A processor requests a new subtask by
executing a fetch-and-add to the shared index with an increment of 1. The value
returned is a pointer to the element (edge or vertex) that is to be processed in the
subtask. The nature of the fetch-and-add instruction ensures that no two processors
will receive the same element. The guarding "while" loop insures that all tasks are
assigned before any processor is yielded to the "coend" statement, and that any
available processor requests the next unassigned task.

Note that if the allocation of processors is done with a fixed unique process
identification number for each, then that number can be used to coordinate the
allocation of tasks so that no two processors are assigned the same task. However,
the dynamic allocation of tasks becomes much more difficult without a fetch-and-add
instruction. The time penalty for synchronization between steps is likely to be much
greater if the task allocation is based on static processor identification numbers.

In our code for the Shiloach/Vishkin connected component algorithm, we
assume that the image is a globally available raster scan array of binary values (l's
and O's). We construct the pointer graph, which will also be global. We structure
the pointer graph as an image of indices in registration with the input image: at a
given pixel, the value of "Parent(i)" at that pixel is the index of the pixel pointed to
by that node in the pointer graph. This structure makes the code more clear, but
wastes a lot of space, since Parent(i) is undefined for pixels i that are not within
regions in the binary image (i.e, where Img(i) - 0). Instead, the pointer graph
should be a set of nodes, with each node containing fields specifying the coordinates
of the corresponding pixel, the Age field, and a pointer to the parent node in the
pointer graph. Since our pointer graph is in registration with the image, and
indexed by the pixel coordinate, the Age field is also a registered image. We also
use a "Hooked" tag on each node, which is used to determine whether a node is
successful in hooking onto another node in Steps 2 and 3.

The vertex and edge lists ore simply arrays of indices and pairs of indices
respectively. We use the fetch-and-add primitive to enqueue elements onto the lists.
Initially, all vertices within regions in the image are placed on the vertex list, and all
south and east edges in regions are placed on the edge lists, as built up in Step 0.
Step I shortcutting is unnecessary during the first iteration, and so is skipped. In all
of the steps, a fetch-and-add is issued to an index in order to allocate elements on
the list to processors. In Steps 2 and 3, the current edge list is scanned, and a new
edge list is formed. Step 2 creates Step 3's edge list, while Step 3 creates the edge

Page 16

... . "V'!1

list for the next Step 2. Each processor enqueues the edge element it is currently
processing onto the output list, unless it observes that both vertices of the edge point
to the same node, or unless the current edge is successful in causing a hook. Since
several processors may request a hook of a single node simultaneously, it is
necessary for a processor to determine whether it has been successful in causing a
hook. This is done by means of a hook count attached to each node, represented as
the array "Hooked(i)". In order for a processor to gain permission to hook node i,
it must issue a fetch-and-add with increment I to the variable Hooked(i), and
retrieve the value 0. Since only one processor will receive a 0 value from the fetch-
and-add, exactly one hook will take place, and a processor knows whether it is the
winner according to the permission granted from the returned value. In this
scheme, we are using the fact thak once a node hooks onto another node, then it is
no longer a root and will at no future time be eligible for hooking again.

During Step 0, the vertex list for Step 4 is created, and stored in the array
Vlist4a. The vertex list for Step I is not needed, since Step I is skipped during the
first iteration. During Step4, the Vlist4a list is read, and new lists of vertices are
created, one for Step I and one for the next iteration's Step 4. The new list for Step
4 is written to Vlist4b. If we instead wrote to Vlist4a, overwriting the list being
scanned, we could potentially overwrite a value in the list that has been allocated to
a processor but not yet read. The length of the list, NV4, is continually
overwritten, but the length of the original list is passed by value and stored in the
procedure-local variable NV. In alternate iterations, we then read from Vlist4b and
write to Vlist4a. Finally, note that Age fields are updated after each shortcut and
hook operation, updating the target of the shortcut or hook in Steps 1, 2, and 3. A
dead tree is one whose root is stagnant after Step 3. Note that a hook into a
stagnant tree must hook onto the root, so that if a stagnant tree is made live by
Steps 2 or 3, the Age field of the root is updated. Thus in Step 4, nodes in dead
trees are recognized because they point to roots whose Age field has not been
updated in the current iteration.

Our time bound of Section 3 shows that the algorithm will terminate after no
more than log(3 -l)N, i.e., approximately 1.71"log 2N iterations. Inspecting the
algorithm, we see that Step I requires 5 accesses to the common memory, while
Steps 2, 3, and 4 require 11 accesses per task. The time used for Step 0 is
negligible. In counting the number of accesses, we've assumed that a fetch-and-add
is equivalent to two accesses, that independent reads or writes can be pipelined
through a connection network and thus can be performed essentially concurrently,
and that accesses by separate processors do not interfere. These are all reasonable
assumptions, modulo minor perturbations, for the Ultracomputer.

The unknown variable in an analysis of the MIMD approach to the
Shiloach/Vishkin algorithm is the rate of decrease of the task list sizes. Initially, the
number of tasks are NVI-NV4-N and NE2,NE3<2.N. We conjecture that the edge
lists will normally drop off geometrically. The vertex lists, particularly the list for
Step 4, will drop only after a component is completely labeled, which can take
l.71logNc iterations, where Nc is the size of the component. In any case, no
iteration will need more than 60-N accesses, and considerable drop off is expected
as iterations proceed.

Page 17 "

Let NC be the number of nodes in the maximum size connected component, and
N is the total number of nodes. Suppose that there are P processors, and each
access to shared memory takes alogP time (in seconds). Since P processors can be
devoted to performing tasks simultaneously, we come up with a time bound of

l03cLN-logNc
P/logP

seconds for termination of the algorithm. If we dispense entirely with the
enqueuing of new tasks, using the same vertex and edge lists in all iterations, we
can then modify the code so that 5 accesses per task are needed in Step 1, and 6
accesses per task suffice in Steps 2,3, and 4. In this case, we know that roughly
35-N accesses will be needed per iteration, with no drop-off. We can thus drop the
103 constant in our upper bound to 60, for otherwise the enqueuing process is not
supportable. The expected constant is probably somewhat smaller, due to the drop
in the length of the task lists.

We can also inspect the code to determine what percentage is spent in
allocation and enqueuing of tasks, and what percentage is spent in actually
performing the steps of the algorithm. This gives a measure of the degree of
parallelization. The measure is still somewhat misleading, however, since the use of
an interconnection network or other access strategy exists solely to support
concurrent reads and writes, and is thus an additional price paid for parallelism.
The synchronization between steps introduces additional drop in the degree of
parallelization, which is difficult to measure since it depends upon the load on the
parallel computer and the number of available processors relative to the size of the
task lists. Finally, many of the tasks attempt to perform a shortcut or hook and are
unsuccessful in the attempt, either because of multiple requests or because the
conditions are not satisfied to request the action. These tasks might be considered
wasted effort. Just taking into account allocation and enqueuing, we estimate that
nearly 50% of the accesses during shortcutting steps and only 30% during hooking
steps constitute performance of the algorithm. The rest is overhead for
parallelization.

Typical numbers for a 512 by 512 image would be a-25 nsec., N-5122 /8,
Nc- 4 000, and P"4096. This yields a time bound (using the constant 60) of 1.728
milliseconds.

This compares with the standard sequential methods, which permit two frame
time (67 msec) connected component labelings on 512 by 512 images. By using a
supercomputer with a 10 nanosecond cycle time, a linear connected component can
be performed in something like IOn 2 cycles, which for n-512 yields 26 milliseconds
times.

Let us briefly compare these times with an n by n mesh connected parallel
array of single bit processors. Let us assume the breadth-first-search method
instead of the Nassimi/Sahni algorithm. Each pixel requires a unique processor
identifier, which for an n by n mesh will have 2logn bits. A local max among the
central pixel and the four nearest neighbors can be constructed using a sequence of
5 pairwise maximums. The maximum of two integers a and b can be calculated
using the formula

•% " • "+e% is• * "j*

max(a,b) - (a+b+la-bi)
2

Thus roughly 10 arithmetic operations, each involving integers with 2logn bits, are
required per iteration. In addition, a 2logn bit operation is needed to mask the
boundary, and another operation is needed on each iteration to check for
termination. We assume the existence of a global "sum-or" that can detect a non-
zero value within a designated plane in the grid in one cycle time. Combining, we
estimate that 24logn+ 1 cycles are needed per iteration. How many iterations will
be needed, on the average? We are tempted to answer V as an estimate of the
diameter of the largest component. Unfortunately, the components are frequently
boundaries of connected regions, and a safer bet for the maximum internal path
length is n/2. Thus we arrive at the time bound of

1
ctn(121ogn + 1).

Using n-512 and a-50 nsec., which seem to be currently typical numbers, we
obtain a time bound of 2.78 milliseconds.

We see that for these numbers, the MIMD Shiloach/Vishkin approach wins,
although the bounds are within the same order of magnitude. Thus the true benefits
of MIMD approaches to image processing lie in the greater degree of flexibility, and
performance improvements, if present, will be borne out mostly by realistic
empirical studies.

8. References
[I] Duff, M.J.B., "Review of the CLIP image processing systems," Proc.

National Computer Conference, (1980), p. 1055; see also: M.J.B. Duff,
"Real Applications on CLIP4", in Integrated Technology for Parallel Image
Processing (S. Levialdi, ed), Academic Press, 1985

[2] Batcher, J.K.E., "Design of a Massively Parallel Processor," IEEE
Transactions on Computers C-29 (1980) p. 836.

[2] Kung, H.T., "Why Systolic Architectures," IEEE Transactions on
Computers, Jan., 1982, p. 37.

[4] R. A. Hummel, "Image Processing on the NYU Ultracomputer", Courant
Institute NYU Ultracomputer Note No. 72 (1984).

[5] Nassimi, D. and S. Sahni, "Finding connected components and connected
ones on a mesh-connected parallel computer," SIAM Journal on Computing 9
(1980), p. 744

(6] Miller, R. and Q. St,.t, "The Pyramid Computer for Image Processing,"
Proceedings of the 7th Int'l Conference on Pattern Recognition, (1984).

[7] Gajski, D., D. Kuck, D. Lawrie, and A. Sameh, "CEDAR - A large scale
Multiprocessor," International Conference on Parallel Processing, Aug.. p,

1983, p. 524.
[8) Gottlieb, A., Grishman, Kruskal, McAuliffe, Rudolph, and Snir, "The e

NYU Ultracomputer - Designing an MIMD Shared Memory Parallel
Computer," IEEE Transactions on Computers 32 (1983), p. 175.

..

Page 19

U 5• "..,..:cK... -

(91 Siegel, H.J., L. (jamieson) Siegel, F.C. Kemmerer, P.T. Mueller Jr., H.E.
Smalley, and S.D. Snith, "PASM: A partitionable SIMD/MIMD system for
image processing and pattern recognition," IEEE Transactions on Computers
C-30 (1981), p. 934.

[10] Reeves, A.P., "Multicluster: An MIMD System for Computer Vision," in
Integrated Technology for Parallel Image Processing, (S. Levialdi, ed),
Academic Press, 1985

[11] Y. Shiloach and U. Vishkin, "An O(logn) Parallel Connectivity Algorithm,"
Journal of Algorithms, 3 (1982), p. 57-67.

I,

Pap 20
%:

Page 20 '

U,

9 Appendix: MIMD Shioach/Vishkin Connected Componentspseudio-code

/* Shiloach/Vishkin algorithm, coded in pseudo-C code for
* the NYU Ultracomputer

#define n - 512 /0 Image is n by n
typedef pnode - integer range[O..n 2 -1];
typedef edge - record

{x: pnode;
y: pnode;J

/* globals: 0/

shared binary Img(O..n 2 -_ 1); /* Input image is n by n, raster scan order 0/
shared pnode Parent(0..n2 - 1);
shared int Age(1...n 2), Hooked(1..n 2);

procedure ShiloachVishkin0)

{ 2-shared pnode Vlistl(0..n 2
- 1), Vlist4(0..n 2 - 1); P Vertex lists 0/

shared edge Elist2(1..2nz), Elist3(1..2n 2); P Edge lists /
shared int NV1, NV4, NE2, NE3; P Integers giving the length of lists/
shared int I; P Iteration counter /

P begin 01

step0(Vlist4a,&NV4,Elist2,&NE2); /0 Create vertex list for step 4 and Edge list for step 2 /
I - 0;
while (NV4 > 0) P While there are non-dead trees "I

{I-I+ 1;
if (I > 1) stepl(Vlistl,NV1); P Uses Vertex list Vlistl 0/
step2(Elist2,NE2, Elist3,&NE3); P Using Elist2, create Elist3 0/
step3(Elist3,NE3, Elist4,&NE2); P Using Elist3, create Elist2 /

if (isodd(l))
{step4(Vlist4a,NV4,Vlistl,&NV1,Vlist4b,&NV4);]

else
(step4(Vlist4b,NV4,Vlistl,&NV1,Vlist4a,&NV4);)

I

stepO(Vlist,pNV,Elist,pNE) P Initializes pointer graph and loads Vertex list and Edge list 0/
shared pnode Vlist(O..n 2 - 1);
shared edge Elist(l..2n 2);

shared int "pNV, "pNE;{

shared pnode pl;

pI - 0; "pNV - 0; "pNE - 0;

cobegin nomorethan n2-n

private pnode i;
private int k;

Pae 21

2h

{whic ((i --fetch&add(&pI,1)) < n2 -n)
/0 We a,.sum,, that the bottom row and

*right column of 1mg are all 0's1
(if (Igi - 1)

{Parent(l) -i; /*Self pointing root/
Age(i) -0;
Hooked(i) -0; P Counter for hook requests1
k .- fetch&add(pNV,1); P Enquece node i1
Vlist(k) -i;
if (Img(i+ 1) - 1) P Enqucue east neighbor1

(k -fetch&add(pNE,1);
E~st(k).x - i
Elist(k).y - i+ 1;}

if (Img(i+ n) - 1) P Enqucue south neighbor 0/
{k - fetch&add(pNE,1);
Elist(k).z .-

Elist(k).y .- i+ n;)

coend

stepl(Vlist,NV) P Shortcuts all nodes on Vlist 0/
shared pnode Vlist(..n 2 -1);
shared in: NV;
f
shared int index;
index -0;
cobegin nomorethan NV

private pnodc old-.parent, new..parent;
private in: k;

(while ((k - fetch& add(index, 1)) < NV)
told-.parent - Parent(k);
new-.parent - Parent(old-parent);
Parent(k) - new-.parent;
if (old-parent # new-.parent) Age(new-.parent) 1- ;

woend

step2(Elist.NE.Elistout,pNEout)
shared edge Elist(l. .2n 2);
shared mnt NE;
shared edge Elistout(1..2n 2)
shared int *pNEou:;

shared in: index;

index - 0;
pNEout - 0;

cobegin nomorethan NE

Pap. 22

private edge e;
private pnode u,v;
private int k,h;

{while ((k -fetch&add(indez,1)) < NE)
{h -1;
e -Elist(k); /0 Edge is (e.x,e.y)1
u 4- Parent(e.x);
v - Parent(e.y);
if (u < v && Parent(u) - u)

(h - fetch&add(&Hooked(u),1);
if (li - 0) / Allow hook only if not hooked yet/

{Parent(u) '- v;
Age(v) .- I;

else if (a> v && Parent(v) - v)
{h .- fetch&add(&Hooked(v),1);
if (h - 0) 1* Allow hook only if not hooked yet1

{Parent(v) -u
Age(u) - 1;

if (u v && h * 0)
{k .- fetch&add(pNEout,l);
Elistout(k) e;

woend

step3 (Ellst,NE,Elistout,pNEout)
shared edge Elist(1..2n2)
shared int NE;2
shared edge Elistout(1. .2n)
shared int pNEout;

shared mnt index;

index -0;
pNEout - 0;

cobegin nomorethan NE
private edge e;
private pnode u,v;
private mnt k,h;

(while ((k - fetch& add(index, 1)) < NE)
{h .- 1; /* Hooked only if h =0/

e - Elist(k);
u - Parent(e.x);
v 4- Parent(e.y);
if (u 0 v)

Pago 23

7 1~

(if (Age(u) < I && Parent(u) = u)
{h - fctch&add(&Hooked(u),1);
if (h - 0) / Allow hook only if not hooked yet "/

{Parent(u) - v; / Hook u to v "
Age(v) -- I'}

}
else if (Age(v) < I && Parent(v) - v)

{h - fetch&add(&Hooked(v),1);
if (h - 0) / Allow hook only if not hooked yet "

{Parent(v) - u; / Hook v to u "
Age(u) - Ij

if(h 0)
{k -- fetch&add(pNEout,l);
Elistout(k) e;

} .

}

coend
}

step4(Vlist,NV,Vlistl,pNV1,Vlist4,pNV4)
shared pnode Vlist(0..n 2 - 1),Vlistl(0..n 2 - l),Vlist4(0..n 2 - 1);
shared int NV;
shared int "pNVI,*pNV4;
{
shared int index;
#define NOT I

index - 0;
pNV1 - 0; "pNV4 -0;

cobegin nomorethan NV
private pnode old-parent, new-parent;
private int kj;

{while ((k - fetch&add(index,l)) < NV)
{old.perent -- Parent(k);
new-parent - Parent(oldparent);

Parent(k) - new-parent;
if (old-parent * new-parent)

{j - fetch&add(pNV1,1);
Vlistl(j) - k;}

if NOT(old-parent - new-parent && Age(new-parent) < I)
{j -- fetch&add(pNV4, 1); i
Vlist4(j) - k;}

}
}

coend

Page 24

............... °!t ,,.' ,' .' .'-. .. .,... .,. ., ' . " " '_" ' . .' .' . . ., ', ;- .,. .:. ': ".-''., , ': " '..'," ". ... ,''.-'....

IP11:7

